Answer:
The solution is [tex]\:\left(-\frac{17}{10},\:-\frac{1}{10}\right)[/tex].
Step-by-step explanation:
An inequality is a mathematical relationship between two expressions and is represented using one of the following:
To find the solution of the inequality [tex]0>\:20x+2>\:-32[/tex] you must:
[tex]\mathrm{If}\:a>u>b\:\mathrm{then}\:a>u\quad \mathrm{and}\quad \:u>b\\\\0>20x+2\quad \mathrm{and}\quad \:20x+2>-32[/tex]
First, solve [tex]0>20x+2[/tex]
[tex]\mathrm{Switch\:sides}\\\\20x+2<0\\\\\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}\\\\20x+2-2<0-2\\\\\mathrm{Simplify}\\\\20x<-2\\\\\mathrm{Divide\:both\:sides\:by\:}20\\\\\frac{20x}{20}<\frac{-2}{20}\\\\\mathrm{Simplify}\\\\x<-\frac{1}{10}[/tex]
Next, solve [tex]20x+2>-32[/tex]
[tex]20x+2-2>-32-2\\\\20x>-34\\\\\frac{20x}{20}>\frac{-34}{20}\\\\x>-\frac{17}{10}[/tex]
Finally, combine the intervals
[tex]x<-\frac{1}{10}\quad \mathrm{and}\quad \:x>-\frac{17}{10}\\\\-\frac{17}{10}<x<-\frac{1}{10}[/tex]
The interval notation is [tex]\:\left(-\frac{17}{10},\:-\frac{1}{10}\right)[/tex] and the graph is: