Respuesta :
Answer:
[tex]x\in(-2,1)[/tex]
Step-by-step explanation:
We are given that a function
[tex]f(x)=(x+2)(x-4)[/tex]
[tex]f(x)=x^2-2x-8[/tex]
Differentiate w.r.t x
[tex]f'(x)=2x-2[/tex]
[tex]f'(x)=0[/tex]
[tex]2x-2=0[/tex]
[tex]2x=2\implies x=\frac{2}{2}=1[/tex]
Therefore, intervals
[tex](-\infty,1),(1,\infty)[/tex]
Interval :[tex](-\infty,1)[/tex]
x=0
[tex]f'(0)=-2<0[/tex]
Decreasing function.
Interval:[tex](1,\infty)[/tex]
Substitute x=2
[tex]f'(2)=2(2)-2=2>0[/tex]
Function increasing.
From given graph we can see that function is negative for the values of x
-2<x<4
Hence, the graph is negative and decreasing for the values of x
[tex]x\in(-2,1)[/tex]
![Ver imagen lublana](https://us-static.z-dn.net/files/d8c/b848cdfe95e84c1282457ed2118f651e.png)
Answer:the answer is c/ all real values of x where 1<x<4
Step-by-step explanation:
edge 2020