Respuesta :

Answer:

[tex]x\in(-2,1)[/tex]

Step-by-step explanation:

We are given that a function

[tex]f(x)=(x+2)(x-4)[/tex]

[tex]f(x)=x^2-2x-8[/tex]

Differentiate w.r.t x

[tex]f'(x)=2x-2[/tex]

[tex]f'(x)=0[/tex]

[tex]2x-2=0[/tex]

[tex]2x=2\implies x=\frac{2}{2}=1[/tex]

Therefore, intervals

[tex](-\infty,1),(1,\infty)[/tex]

Interval :[tex](-\infty,1)[/tex]

x=0

[tex]f'(0)=-2<0[/tex]

Decreasing  function.

Interval:[tex](1,\infty)[/tex]

Substitute x=2

[tex]f'(2)=2(2)-2=2>0[/tex]

Function increasing.

From given graph we can see that function is negative for the values of x

-2<x<4

Hence, the graph is negative and decreasing for the values of x

[tex]x\in(-2,1)[/tex]

Ver imagen lublana

Answer:the answer is c/ all real values of x where 1<x<4

Step-by-step explanation:

edge 2020