What is the perimeter of ABCDE, rounded to the nearest whole number?

Answer:
option B -> 23 units
Step-by-step explanation:
To solve this question we need to find the length of each side, and we can do this finding the distance between the pair of points that make a side, using the formula:
[tex]dist = \sqrt{(x_1 - x_2)^{2} + (y_1 - y_2)^{2} }[/tex]
Where the points are [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex].
So, using the points A = (-4, -2), B = (-1, 2), C = (2, 2), D = (5, -1) and E = (2, -4), we have that:
[tex]AB = \sqrt{(-4 - (-1))^{2} + (-2 - 2)^{2} } = 5[/tex]
[tex]BC = \sqrt{(-1 - 2)^{2} + (2 - 2)^{2} } = 3[/tex]
[tex]CD = \sqrt{(2 - 5)^{2} + (2 - (-1))^{2} } = 4.2426[/tex]
[tex]DE = \sqrt{(5 - 2)^{2} + (-1 - (-4))^{2} } = 4.2426[/tex]
[tex]EA = \sqrt{(2 - (-4))^{2} + (-4 - (-2))^{2} } = 6.3246[/tex]
So the perimeter of ABCDE is:
[tex]P(ABCDE) = AB + BC + CD + DE + EA[/tex]
[tex]P(ABCDE) = 5 + 3 + 4.2426 + 4.2426 + 6.3246 = 22.8098[/tex]
Rounding to nearest whole number we have:
[tex]P(ABCDE) = 23[/tex]
So the answer is the option B.