Respuesta :
Answer: no solution
Step-by-step explanation: 4/5z - 1/5z = 3/5z
3/5z + 4 = 3/5z + 6
No solution
Answer:
[tex]$z=-\frac{48}{55} $[/tex]
It has one solution.
Step-by-step explanation:
[tex]$\frac{4}{5z}-\frac{1}{5z+4}=\frac{3}{5z+6} $[/tex]
Once we have fractions we already know the values when the equation is not true. I'm talking about division when the denominator is 0. It is undefined.
The values for [tex]z[/tex] are:
[tex]$0 ; -\frac{4}{5} \text{ and } -\frac{6}{5} $[/tex]
Now let's find [tex]z[/tex]. First, we have to find the least common multiplier:
In this case: [tex](5z+4)(5z+6)(5z)[/tex]
[tex]$\frac{4}{5z}-\frac{1}{5z+4}=\frac{3}{5z+6} $[/tex]
[tex]$\frac{4(5z+4)(5z+6)}{(5z+4)(5z+6)(5z)}-\frac{1(5z)(5z+6)}{(5z+4)(5z+6)(5z)}=\frac{3(5z)(5z+4)}{(5z+4)(5z+6)(5z)} $[/tex]
I will not proceed in the way above because it would take some time to type, instead, multiply [tex](5z+4)(5z+6)(5z)[/tex] both sides.
[tex]4(5z+4)(5z+6)-1(5z)(5z+6)=3(5z)(5z+4)[/tex]
[tex](20z+16)(5z+6)-(5z)(5z+6)=15z(5z+4)[/tex]
[tex]100z^2+200z+96-25z^2-30z=75z^2+60z[/tex]
[tex]200z+96-30z=60z[/tex]
[tex]200z-90z=-96[/tex]
[tex]110z=-96[/tex]
[tex]$z=-\frac{96}{110} $[/tex]
[tex]$z=-\frac{48}{55} $[/tex]