(07.06 LC) Which statement is true about the equation fraction 4 over 5z − fraction 1 over 5z + 4 = fraction 3 over 5z + 6? It has no solution. It has one solution. It has two solutions. It has infinitely many solutions.

Respuesta :

Answer: no solution

Step-by-step explanation: 4/5z - 1/5z = 3/5z

3/5z + 4 = 3/5z + 6

No solution

Answer:

[tex]$z=-\frac{48}{55} $[/tex]

It has one solution.

Step-by-step explanation:

[tex]$\frac{4}{5z}-\frac{1}{5z+4}=\frac{3}{5z+6} $[/tex]

Once we have fractions we already know the values when the equation is not true. I'm talking about division when the denominator is 0. It is undefined.

The values for [tex]z[/tex] are:

[tex]$0 ; -\frac{4}{5} \text{ and } -\frac{6}{5} $[/tex]

Now let's find [tex]z[/tex]. First, we have to find the least common multiplier:

In this case: [tex](5z+4)(5z+6)(5z)[/tex]

[tex]$\frac{4}{5z}-\frac{1}{5z+4}=\frac{3}{5z+6} $[/tex]

[tex]$\frac{4(5z+4)(5z+6)}{(5z+4)(5z+6)(5z)}-\frac{1(5z)(5z+6)}{(5z+4)(5z+6)(5z)}=\frac{3(5z)(5z+4)}{(5z+4)(5z+6)(5z)} $[/tex]

I will not proceed in the way above because it would take some time to type, instead, multiply [tex](5z+4)(5z+6)(5z)[/tex] both sides.

[tex]4(5z+4)(5z+6)-1(5z)(5z+6)=3(5z)(5z+4)[/tex]

[tex](20z+16)(5z+6)-(5z)(5z+6)=15z(5z+4)[/tex]

[tex]100z^2+200z+96-25z^2-30z=75z^2+60z[/tex]

[tex]200z+96-30z=60z[/tex]

[tex]200z-90z=-96[/tex]

[tex]110z=-96[/tex]

[tex]$z=-\frac{96}{110} $[/tex]

[tex]$z=-\frac{48}{55} $[/tex]