Respuesta :
Answer:
[tex]1.2\times 10^3 rNe[/tex]
Explanation:
Given that
Speed of neon = 350 m/s
Un-certainity in speed= (0.01 ÷ 100) × 350
= 0.035 m/s
As per heisenberg uncertainty principle
[tex]\triangle X\times m \triangle \ v\geq \frac{h}{4\pi }[/tex] ....... (i)
substituting the values in equation (i)
[tex]\triangle X = 4.49 \times 10^-^8 m[/tex]
In terms of rNe i.e 38 pm = [tex]38\times 10^-^1^2[/tex]
[tex]\triangle X = \frac{4.49\times 10^-^8}{38\times 10^-^1^2}[/tex]
[tex]= 0.118 \times 10^4 \times (rNe)[/tex]
[tex]= 1.18\times 10^3 rN[/tex]
[tex]= 1.2 \times 10^3 rNe[/tex]
Therefore the smallest possible length of the box inside in which the atom could be known for locating with certainty is [tex]1.2\times 10^3 rNe[/tex]
[tex]1.2*10^3 (Ne_r)[/tex]
Given that:
- Speed of neon = 350 m/s
- Uncertainty in speed can be calculated as:
[tex]\frac{0.01}{100} *350=0.035 ms^{-1}[/tex] m/s
Heisenberg uncertainty principle:
It states that the position and the velocity of an object cannot both be measured exactly, at the same time, even in theory.
Heisenberg uncertainty principle can be stated as:
Δx Δp ≥ [tex]\frac{h}{4\pi}[/tex]
Or
Δx mΔv ≥ [tex]\frac{h}{4\pi}[/tex] .......... (i)
On substituting the values in equation (i)
Δx =[tex]4.49 * 10^{-8} ms^{-1}[/tex]
In terms of [tex]Ne_r\\[/tex](radius of Neon) i.e. [tex]38\text{pm}= 38 * 10^{12}\text{m}[/tex]
Δx = [tex]\frac{4.49*10^{-8}}{38*10^{12}}[/tex]
[tex]=0.0118*10^4* (Ne_r)\\\\=1.18*10^3 (Ne_r)\\\\=1.2*10^3 (Ne_r)[/tex]
Therefore the smallest possible length of the box inside in which the atom could be known for locating with certainty is [tex]1.2*10^3 (Ne_r)[/tex]
Learn more:
brainly.com/question/2663406