Answer:
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Replacing the info given we got:
[tex]z=\frac{0.77 -0.76}{\sqrt{\frac{0.76(1-0.76)}{1100}}}=0.778[/tex]
Step-by-step explanation:
Information given
n=1100 represent the random sample taken
[tex]\hat p=0.77[/tex] estimated proportion of chips that fall in the first 1000 hours of their use
[tex]p_o=0.76[/tex] is the value that we want to test
z would represent the statistic
[tex]p_v[/tex] represent the p value
Solution
We need to conduct a hypothesis in order to check if the true proportion is equal to 0.76.:
Null hypothesis:[tex]p=0.76[/tex]
Alternative hypothesis:[tex]p \neq 0.76[/tex]
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Replacing the info given we got:
[tex]z=\frac{0.77 -0.76}{\sqrt{\frac{0.76(1-0.76)}{1100}}}=0.778[/tex]