Answer:
The [tex]K_{m}[/tex] of a substrate will be "10 μM".
Explanation:
The given values are:
[tex]E_{t} = 20 \ nM[/tex]
[tex][Substract] = 40 \ \mu M[/tex]
[tex]K_{cat}=600 \ s^{-1}[/tex]
Reaction velocity, [tex]Vo=9.6 \ \mu M s^{-1}[/tex]
As we know,
⇒ [tex]Vo=\frac{K_{cat}[E_{t}][S]}{K_{m}+[S]}[/tex]
On putting the estimated values, we get
⇒ [tex]9.6=\frac{600\times 20\times 10^{-3}\times 40}{K_{m}+40}[/tex]
⇒ [tex]K_{m}+40=\frac{600\times 20\times 10^{-3}\times 40}{9.6}[/tex]
⇒ [tex]K_{m}+40=50[/tex]
On subtracting "40" from both sides, we get
⇒ [tex]K_{m}+40-40=50-40[/tex]
⇒ [tex]K_{m}=10 \ \mu M[/tex]