Answer:
The distance covered by puck A before collision is [tex]z = 8.56 \ m[/tex]
Explanation:
From the question we are told that
The label on the two hockey pucks is A and B
The distance between the two hockey pucks is D 18.0 m
The speed of puck A is [tex]v_A = 3.90 \ m/s[/tex]
The speed of puck B is [tex]v_B = 4.30 \ m/s[/tex]
The distance covered by puck A is mathematically represented as
[tex]z = v_A * t[/tex]
=> [tex]t = \frac{z}{v_A}[/tex]
The distance covered by puck B is mathematically represented as
[tex]18 - z = v_B * t[/tex]
=> [tex]t = \frac{18 - z}{v_B}[/tex]
Since the time take before collision is the same
[tex]\frac{18 - z}{V_B} = \frac{z}{v_A}[/tex]
substituting values
[tex]\frac{18 -z }{4.3} = \frac{z}{3.90}[/tex]
=> [tex]70.2 - 3.90 z = 4.3 z[/tex]
=> [tex]z = 8.56 \ m[/tex]