Answer:
[tex]P(X>60)=P(\frac{X-\mu}{\sigma}>\frac{60-\mu}{\sigma})=P(Z>\frac{60-49}{16})=P(z>0.6875)[/tex]
And we can find the probability with the complement rule and the normal standard distirbution and we got:
[tex]P(z>0.6875)=1-P(z<0.6875)= 1-0.7541= 0.2459[/tex]
Step-by-step explanation:
Let X the random variable that represent the time spent reading of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(49,16)[/tex]
Where [tex]\mu=49[/tex] and [tex]\sigma=16[/tex]
We are interested on this probability
[tex]P(X>60)[/tex]
And we can use the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we got:
[tex]P(X>60)=P(\frac{X-\mu}{\sigma}>\frac{60-\mu}{\sigma})=P(Z>\frac{60-49}{16})=P(z>0.6875)[/tex]
And we can find the probability with the complement rule and the normal standard distirbution and we got:
[tex]P(z>0.6875)=1-P(z<0.6875)= 1-0.7541= 0.2459[/tex]