Answer:
$120.52
Margin of error M.E = $120.52
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
x+/-M.E
Where M.E = margin of error
M.E = zr/√n
Given that;
Mean x = $1,873
Standard deviation r = $550
Number of samples n = 80
Confidence interval = 95%
z(at 95% confidence) = 1.96
Substituting the values we have;
M.E = (1.96 × $550/√80) = 120.5240639872
M.E = $120.52
Margin of error M.E = $120.52