Respuesta :

Answer:

Option C.

Step-by-step explanation:

It is given that

[tex]\sec \theta=-\dfrac{5}{4}[/tex]

It is also given that [tex]\theta[/tex] is in second quadrant.

Only sin and coses are positive in second quadrant.

We know that

[tex]\tan^2\theta=\sec^2\theta -1[/tex]

[tex]\tan\theta=-\sqrt{\sec^2\theta -1}[/tex]    [[tex]\theta[/tex] is in second quadrant]

Substitute [tex]\sec \theta=-\dfrac{5}{4}[/tex] in the above equation.

[tex]\tan\theta=-\sqrt{(-\dfrac{5}{4})^2 -1}[/tex]

[tex]\tan\theta=-\sqrt{\dfrac{25}{16}-1}[/tex]

[tex]\tan\theta=-\sqrt{\dfrac{25-16}{16}}[/tex]

[tex]\tan\theta=-\sqrt{\dfrac{9}{16}}[/tex]

[tex]\tan\theta=-\sqrt{\dfrac{3}{4}}[/tex]    ...(1)

Now, we know that

[tex]\cot \theta=\dfrac{1}{\tan \theta}[/tex]

Using (1), we get

[tex]\cot \theta=\dfrac{1}{-\frac{3}{4}}[/tex]

[tex]\cot \theta=-\dfrac{4}{3}[/tex]

Therefore, the correct option is C.

Answer:

C) –4∕3

Step-by-step explanation:

ACCESS MORE