Respuesta :
[tex]4c + 6v = 80[/tex] is an illustration of a linear representation of equations
The true statements are:
- (b) 14 cars require 4 vans
- (e) No vans are needed If there are 20 cars
- (f) 8 cars require 8 vans
First, we analyze the options
(a) 2 cars will require 2 vans
This means that:
[tex](c,v) = (2,2)[/tex]
Substitute these values in [tex]4c + 6v = 80[/tex]
[tex]4 \times 2 + 6 \times 2 = 80[/tex]
[tex]8 + 12 = 80\\[/tex]
[tex]20= 80[/tex]
The above is not true
i.e. [tex]20 \ne 80[/tex]
Hence, (a) is false
(b) c = 14 and v = 4
Substitute 14 for c and 4 for v
[tex]4c + 6v = 80[/tex]
[tex]4 \times 14 + 6 \times 4 = 80[/tex]
[tex]56 + 24 = 80[/tex]
[tex]80= 80[/tex]
Option (b) is true
(c) There will be extra space when 6 cars and 11 vans go
Substitute 6 for c and 11 for v
[tex]4c + 6v = 80[/tex]
[tex]4 \times 6 + 6 \times 11 = 80[/tex]
[tex]24+ 66 = 80[/tex]
[tex]90 = 80[/tex]
Option (c) is wrong because the result of the inequality should be less than 80
(d) 10 cars and 8 vans is not enough
Substitute 10 for c and 8 for v
[tex]4c + 6v = 80[/tex]
[tex]4 \times 10 + 6 \times 8 = 80[/tex]
[tex]40 + 48 = 80[/tex]
[tex]88 = 80[/tex]
(d) is false, because the result should be less than 80
(e) If 20 cars go, then no vans are needed
This means that:
c = 20, v = 0
So, we have:
[tex]4c + 6v = 80[/tex]
[tex]4 \times 20 + 6 \times 0 = 80[/tex]
[tex]80 + 0 = 80[/tex]
[tex]80 = 80[/tex]
Option (e) is true
(f) 8 cars and 8 vans would satisfy the equation
This means that:
c = 8, v = 8
So, we have:
[tex]4c + 6v = 80[/tex]
[tex]4 \times 8 + 6 \times 8 = 80[/tex]
[tex]32 + 48 = 80[/tex]
[tex]80= 80[/tex]
Option (f) is true
Read more about linear equations at:
https://brainly.com/question/11897796