Respuesta :
Answer:
(a) [tex]m=2.69m[/tex]
(b) [tex]x_{LiBr}=0.099[/tex]
(c) [tex]\% LiBr=18.9\%[/tex]
Explanation:
Hello,
In this case, given the molality in mol/L, we can compute the required units of concentration assuming a 1-L solution of acetonitrile and lithium bromide that has 1.80 moles of lithium bromide:
(a) For the molality, we first compute the grams of lithium bromide in 1.80 moles by using its molar mass:
[tex]m_{LiBr}=1.80mol*\frac{86.845 g}{1mol}=156.32g[/tex]
Next, we compute the mass of the solution:
[tex]m_{solution}=1L*0.826\frac{g}{mL}*\frac{1000mL}{1L}=826g[/tex]
Then, the mass of the solvent (acetonitrile) in kg:
[tex]m_{solvent}=(826g-156.32g)*\frac{1kg}{1000g}=0.670kg[/tex]
Finally, the molality:
[tex]m=\frac{1.80mol}{0.670kg} \\\\m=2.69m[/tex]
(b) For the mole fraction, we first compute the moles of solvent (acetonitrile):
[tex]n_{solvent}=669.68g*\frac{1mol}{41.05 g} =16.31mol[/tex]
Then, the mole fraction of lithium bromide:
[tex]x_{LiBr}=\frac{1.80mol}{1.80mol+16.31mol}\\ \\x_{LiBr}=0.099[/tex]
(c) Finally, the mass percentage with the previously computed masses:
[tex]\% LiBr=\frac{156.32g}{826g}*100\%\\ \\\% LiBr=18.9\%[/tex]
Regards.