Answer:
18.66 ft/s
Step-by-step explanation:
The distance between you and the elevator is given by:
[tex]h=\sqrt{x^2+y^2}[/tex]
The rate of change for the distance between you and the elevator is given by:
[tex]\frac{dh}{dt}=\frac{dh}{dy}*\frac{dy}{dt}[/tex]
[tex]-16=\frac{dh}{dy}*\frac{dy}{dt}[/tex]
[tex]\frac{dh}{dy}=\frac{d}{dy} (\sqrt{x^2+y^2})\\[/tex]
Applying the chain rule:
[tex]u=x^2+y^2\\\frac{dh}{dy}=\frac{d\sqrt u}{du} *\frac{du}{dy}\\\frac{dh}{dy}=\frac{1}{2\sqrt u} *2y\\\frac{dh}{dy}=\frac{y}{\sqrt {(x^2+y^2)}}[/tex]
Therefore, at x=300 and y = 500, dy/dt is:
[tex]-16=\frac{y}{\sqrt {(x^2+y^2)}}*\frac{dy}{dt}\\-16=\frac{500}{\sqrt {(300^2+500^2)}}*\frac{dy}{dt}\\\frac{dy}{dt}=-18.66\ ft/s[/tex]
The elevator is descending at 18.66 ft/s.