Respuesta :
Answer:
720 sq units.
Step-by-step explanation:
Length and width of square prism, w = 12 units
Height of square prism, x = 7 units
Height of square pyramid, y = 8 units
Please have a look at the attached image.
Here 2 Surfaces will not be exposed which are base of the square pyramid and the top of the square prism i.e. 2 square surfaces will not be exposed.
Here, surface area of the composite figure will be:
Surface Area of Composite Figure = Lateral surface area of Square Pyramid + Surface Area of 5 surfaces of the square prism
For finding the lateral surface area of pyramid, we need to find the slant height of the pyramid.
Let slant height be [tex]l[/tex] units.
Using pythagoras theorem, we can find out the value of [tex]l[/tex].
As per theorem:
[tex]Hypotenuse^{2} = Base^{2} + Height^{2}\\[/tex]
[tex]\Rightarrow l^{2} = (\dfrac{w}{2})^{2} + y^{2}\\\Rightarrow l^{2} = (\dfrac{12}{2})^{2} + 8^{2}\\\Rightarrow l^{2} = {6}^{2} + 8^{2}\\\Rightarrow l^{2} = 36+64 = 100\\\Rightarrow l = 10\ units[/tex]
Lateral surface area of square prism = 4 [tex]\times[/tex] Area of triangular surface
[tex]\Rightarrow 4 \times \dfrac{1}{2}\times Base \times Slant\ Height\\\Rightarrow 4 \times \dfrac{1}{2} \times 10 \times 12\\\Rightarrow 240\ sq\ units[/tex]
Surface Area of 5 surfaces of the square prism =
[tex]4 \times x \times w + w^2\\\Rightarrow 4 \times 12 \times 7 + 12^2\\\Rightarrow 336 +144\\\Rightarrow 480\ sq\ units[/tex]
So, total surface area of composite figure:
240 + 480 = 720 sq units.
![Ver imagen isyllus](https://us-static.z-dn.net/files/d78/7777b6fe5893c82b6e0b8b67c1c2e721.png)