Answer:
[tex]P(15<X<20)=P(\frac{15-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{20-\mu}{\sigma})=P(\frac{15-17.15}{2.25}<Z<\frac{20-17.15}{2.25})=P(-0.96<z<1.27)[/tex]
And we can find the probability with this difference and using the normal standard table:
[tex]P(-0.96<z<1.27)=P(z<1.27)-P(z<-0.96)= 0.898-0.169 = 0.729[/tex]
Step-by-step explanation:
Let X the random variable that represent the wages, and for this case we know the distribution for X is given by:
[tex]X \sim N(17.15,2.25)[/tex]
Where [tex]\mu=17.15[/tex] and [tex]\sigma=2.25[/tex]
We want to find this probability:
[tex]P(15<X<20)[/tex]
And we can use the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we have:
[tex]P(15<X<20)=P(\frac{15-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{20-\mu}{\sigma})=P(\frac{15-17.15}{2.25}<Z<\frac{20-17.15}{2.25})=P(-0.96<z<1.27)[/tex]
And we can find the probability with this difference and using the normal standard table:
[tex]P(-0.96<z<1.27)=P(z<1.27)-P(z<-0.96)= 0.898-0.169 = 0.729[/tex]