The diagrams shows a 3cm x 5cm x 4cm cuboid.
![The diagrams shows a 3cm x 5cm x 4cm cuboid class=](https://us-static.z-dn.net/files/d5b/44a5c02fd6405bce11cd4aee5581d0c2.png)
Answer:
a) 5.83 cm
b) 34.45°
Step-by-step explanation:
a) From Pythagoras theorem of right triangles, given right triangle ABC:
AB² + BC² = AC²
Therefore:
AC² = 5² + 3²
AC² = 25 + 9 = 34
AC = √34
AC = 5.83 cm
b) From triangle ACD, AC = 5.83 cm, AD = 4 cm and ∠A = 90°.
From Pythagoras theorem of right triangles, given right triangle ACD:
AD² + AC² = DC²
Therefore:
DC² = 5.83² + 4²
DC² = 34 + 16 = 50
DC = √50
DC = 7.07 cm
Let ∠ACD be x. Therefore using sine rule:
[tex]\frac{4}{sin(x)}=\frac{7.07}{sin(90)} \\ sin(x)=\frac{4*sin(90))}{7.07}=0.5657\\ x=sin^{-1}(0.5657)\\x=34.45^o[/tex]