The linear homogeneous ODE
[tex]y'''+11y''+38y'+40y=0[/tex]
has characteristic equation
[tex]r^3+11r^2+38r+40=0[/tex]
which factors to
[tex](r+2)(r+4)(r+5)=0[/tex]
and hence has roots at [tex]r=-2,-4,-5[/tex]. So the characteristic solution to the ODE is
[tex]y_c=C_1e^{-2x}+C_2e^{-4x}+C_3e^{-5x}[/tex]
Use the given initial conditions to solve for each C.
[tex]y(0)=0\implies C_1+C_2+C_3=0[/tex]
[tex]y'(0)=-19\implies -2C_1-4C_2-5C_3=-19[/tex]
[tex]y''(0)=4C_1+16C_2+25C_3=117[/tex]
[tex]\implies C_1=-9,C_2=8,C_3=1[/tex]
so that the particular solution is
[tex]\boxed{y(x)=-9e^{-2x}+8e^{-4x}+e^{-5x}}[/tex]