Which could be the first step in simplifying this expression? Check all that apply. (x cubed x Superscript negative 6 Baseline) squared (x Superscript negative 18 Baseline) squared (x Superscript negative 3 Baseline) squared (x Superscript negative 2 Baseline) squared x Superscript 6 Baseline x Superscript negative 12 Baseline x Superscript 5 Baseline x Superscript negative 4. Need Help ASAP!

Which could be the first step in simplifying this expression Check all that apply x cubed x Superscript negative 6 Baseline squared x Superscript negative 18 Ba class=

Respuesta :

Answer:

[tex](x^{-3} )^{2}[/tex]

[tex]x^6 x^{-12}[/tex]

Step-by-step explanation:

[tex](x^{3} x^{-6} )^{2}[/tex] is the expression given to be solved.

First of all let us have a look at 3 formulas:

[tex]1.\ p^a \times p^b = p^{(a+b)}\\2.\ (p^a \times q^b)^c = (p^{a})^c \times (q^{b})^c\\3.\ (p^a)^b = p^{a\times b}[/tex]

Both the formula can be applied to the expression([tex](x^{3} x^{-6} )^{2}[/tex]) during the first step while solving it.

Applying formula (1):

[tex](x^{3} x^{-6} )^{2}[/tex]

Comparing the terms of [tex](x^{3} x^{-6} )[/tex] with [tex]p^a \times p^b[/tex]

[tex]p=x, a =3, b=-6[/tex]

[tex]\Rightarrow x^{3+(-6)}\\\Rightarrow x^{3-6}\\\Rightarrow x^{-3}[/tex]

So, [tex](x^{3} x^{-6} )^{2}[/tex] is reduced to [tex](x^{-3} )^{2}[/tex]

Applying formula (2):

Comparing the terms of [tex](x^{3} x^{-6} )^{2}[/tex] with [tex](p^a \times q^b)^c[/tex]

[tex]p=q=x, a =3, b=-6, c=2[/tex]

[tex]\Rightarrow (x^{3})^2\times (x^{-6})^2\\\text{Applying Formula (3)}\\x^6 x^{-12}[/tex]

So, [tex](x^{3} x^{-6} )^{2}[/tex] is reduced to [tex]x^6 x^{-12}[/tex].

So, the answers can be:

[tex](x^{-3} )^{2}[/tex]

[tex]x^6 x^{-12}[/tex]

Answer:

b d

Step-by-step explanation:

ACCESS MORE