The diagram shows a solid which is half of a cone. Calculate the total surface area of the solid.
a. ( 48 + 48[tex]\pi[/tex] ) [tex]cm^{2}[/tex]
b. ( 48 + 15[tex]\pi[/tex] ) [tex]cm^{2}[/tex]
c. ( 48 + 30[tex]\pi[/tex] ) [tex]cm^{2}[/tex]
d. ( 24 + 15[tex]\pi[/tex] ) [tex]cm^{2}[/tex]

The diagram shows a solid which is half of a cone Calculate the total surface area of the solid a 48 48texpitex texcm2tex b 48 15texpitex texcm2tex c 48 30texpi class=

Respuesta :

Answer:

100πcm².

None of the options is correct

Step-by-step explanation:

Total surface area of a cone [tex]S[/tex] = [tex]\pi r^{2}+\pi rl\\[/tex]

Since the diagram is half of a cone, its surface area will be [tex]S = \frac{\pi r^{2} +\pi rl}{2}[/tex]

r = radius of the cone

l = slant height

From the diagram diameter of the cone = 16m;

r = 16/2 = 8m

l = 17m

[tex]S = \frac{\pi (8)^{2} +\pi (8)(17)}{2}\\S = \frac{64\pi + 136\pi }{2} \\S = 32\pi + 68\pi \\S = 100\pi cm^{2}[/tex]

ACCESS MORE