Answer:
The correct option is A. 204, 212.5, 223, 233.5, 242.
Step-by-step explanation:
The five number summary of a data set is:
The data provided, in ascending order is:
S = {204 , 207 , 212 , 212 , 213 , 217 , 219 , 223 , 223 , 225 , 230 , 233 , 234 , 238 , 239 , 242}
There are a total of 16 values in the data set.
The minimum value is,
Minimum = 204
The first quartile is the median value of the first half of the data.
The first half of the data is:
S₁ = {204 , 207 , 212 , 212 , 213 , 217 , 219 , 223 }
The median for even number of observations is the mean of the middle two values.
[tex]\text{Q}_{1}=\frac{4^{th}+5^{th}}{2}=\frac{212+213}{2}=212.5[/tex]
The first quartile is 212.5.
The median for even number of observations is the mean of the middle two values.
[tex]\text{Median}=\frac{8^{th}+9^{th}}{2}=\frac{223+223}{2}=223[/tex]
The median of the data is 223.
The third quartile is the median value of the second half of the data.
The first half of the data is:
S₂ = {223 , 225 , 230 , 233 , 234 , 238 , 239 , 242}
The median for even number of observations is the mean of the middle two values.
[tex]\text{Q}_{3}=\frac{12^{th}+13^{th}}{2}=\frac{233+234}{2}=233.5[/tex]
The third quartile is 233.5.
The maximum value is,
Maximum = 242