Air flows steadily and isentropically from standard atmospheric conditions to a receiver pipe through a converging duct. The cross-sectional area of the throat of the converging duct is 0.05 ft2. Determine the mass flowrate in lbm/s through the duct if the receiver pressure is 10 psia.

Respuesta :

Answer:

The answer is "0.0728"

Explanation:

Given value:

[tex]P_0= 14.696\ ps\\\\\ p _{0}= 0.00238 \frac{slue}{ft^{3}}\\\\\ A= 0.05 ft^2\\\\\ T_0= 59^{\circ}f = 518.67R\\\\\ air \ k= 1\\\\ \ cirtical \ pressure ( P^*)=P_0\times \frac{2}{k+1}^{\frac{k}{k-1}}\\[/tex]

                                     [tex]= 14.696\times (\frac{2}{1.4+1})^{\frac{1.4}{1.4-1}}\\\\=7.763 Psia\\\\[/tex]

if [tex]P<P^{*} \to[/tex] flow is chocked

if [tex]P>P^{*} \to[/tex] flow is not chocked

When  P= 10 psia < [tex]P^{*}[/tex] [tex]\to[/tex] not chocked

match number:

[tex]\ for \ P= \ 10\ G= \sqrt{\frac{2}{k-1}[(\frac{\ p_{0}}{p})^{\frac{k-1}{k}}-1]}[/tex]

                       [tex]= \sqrt{\frac{2}{1.4-1}[(\frac{14.696}{10})^{\frac{1.4-1}{1.4}}-1]}[/tex]

[tex]M_0=7.625[/tex]

[tex]p=p_0(1+\frac{k-1}{2} M_0 r)^\frac{1}{1-k}[/tex]

  [tex]=0.00238(1+\frac{1.4-1}{2}0.7625`)^{\frac{1}{1-1.4}}\\\\\ p=0.001808 \frac{slug}{ft^3}[/tex]

[tex]\ T= T_0(1+\frac{k-1}{2} Ma^r)^{-1}\\\\\ T=518.67(1+\frac{1.4-1}{2} 0.7625^2)^{-1}\\\\\ T=464.6R\\\\[/tex]

[tex]\ velocity \ of \ sound \ (C)=\sqrt{KRT}\\\\[/tex]

                                    [tex]=\sqrt{1.4\times1716\times464.6}\\\\=1057 ft^3\\\\[/tex]

R= gas constant=1716

[tex]m=PAV\\\\[/tex]

    [tex]=0.001808\times0.05\times(Ma.C)\\\\=0.001808\times0.05\times0.7625\times 1057\\\\=0.0728\frac{slug}{s}[/tex]

ACCESS MORE