Answer:
The net torque acting on the CD is [tex]8.281\times 10^{-4}\,N\cdot m[/tex].
Explanation:
According to the D'Alembert's Principle, net torque of a rigid body is equal to the product of the moment of inertia with respect to its center of gravity and angular acceleration. That is:
[tex]\tau = I_{g}\cdot \alpha[/tex]
Where:
[tex]\tau[/tex] - Net torque, measured in Newton-meters.
[tex]I_{g}[/tex] - Moment of inertia, measured in kilogram-square meters.
[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.
The moment of inertia of a solid disk is:
[tex]I_{g} = \frac{1}{2}\cdot m \cdot r^{2}[/tex]
Given that [tex]m = 0.016\,kg[/tex] and [tex]0.0603\,m[/tex], the moment of inertia of the CD is:
[tex]I_{g} = \frac{1}{2}\cdot (0.016\,kg)\cdot (0.0603\,m)^{2}[/tex]
[tex]I_{g} = 2.909\times 10^{-5}\,kg\cdot m^{2}[/tex]
Let suppose that CD accelerates constantly, so that motion equation is the following:
[tex]\omega = \omega_{o} + \alpha \cdot t[/tex]
[tex]\alpha = \frac{\omega - \omega_{o}}{t}[/tex]
[tex]\alpha = \frac{19.5\,\frac{rad}{s}-0\,\frac{rad}{s} }{0.685\,s}[/tex]
[tex]\alpha = 28.467\,\frac{rad}{s^{2}}[/tex]
Finally, the net torque acting on the CD is:
[tex]\tau = (2.909\times 10^{-5}\,kg\cdot m^{2})\cdot \left(28.467\,\frac{rad}{s^{2}}\right)[/tex]
[tex]\tau = 8.281\times 10^{-4}\,N\cdot m[/tex]
The net torque acting on the CD is [tex]8.281\times 10^{-4}\,N\cdot m[/tex].