Which of the following is not a polynomial identity?
![Which of the following is not a polynomial identity class=](https://us-static.z-dn.net/files/d52/d3354743550be266fd838ea6b5ddfb3a.jpeg)
[tex](a^{2} +b^{2} )(c^{2} -d^{2} )=(ac- b d)^{2} +(ad +bc)[/tex] is not a polynomial identity.
"Polynomial identity is defined as the equation which helps us to solve the algebraic equation just by using it directly."
According to the question,
Verify given polynomial identity,
A. [tex]a^{3} -b^{3} = (a-b)(a^{2} +ab + b^{2} )[/tex]
Right hand side
[tex]= (a-b)(a^{2} +ab + b^{2} )\\=a(a^{2} +ab + b^{2} )-b(a^{2} +ab + b^{2} )\\=a^{3} +a^{2} b+ ab^{2} - ba^{2}-ab^{2}-b^{3}\\=a^{3}-b^{3}\\[/tex]
= Left hand side
This is a polynomial identity.
B. [tex](a+b)^{2} = a^{2} +2ab+b^{2}[/tex]
Left hand side
[tex](a +b)^{2}\\=(a +b)(a +b)\\=a(a + b) +b(a + b) \\= a^{2} +ab + b a + b^{2}\\ =a^{2} +2ab + b^{2}[/tex]
=Right hand side
This is a polynomial identity.
C. [tex](a^{2} +b^{2} )(c^{2} -d^{2} )=(ac- b d)^{2} +(ad +bc)[/tex]
Left hand side
[tex](a^{2} +b^{2} )(c^{2} -d^{2} )\\=a^{2}(c^{2} -d^{2} )+b^{2} (c^{2} -d^{2} )\\=a^{2} c^{2} -a^{2} d^{2} +b^{2} c^{2} -b^{2} d^{2}[/tex] ____(1)
Right hand side
[tex]=(ac- b d)^{2} +(ad +bc)\\=a^{2} c^{2} -2acbd +b^{2} d^{2} + ad +bc[/tex] ____(2)
From (1) and (2) we get,
Left hand side ≠ Right hand side
This is not a polynomial identity.
D. [tex]a^{2} -b^{2} =(a +b)(a -b)[/tex]
Right hand side
[tex]=(a +b)(a -b)\\=a(a-b) + b(a -b)\\=a^{2} -ab +ba-b^{2} \\=a^{2} -b^{2}[/tex]
=Left hand side
This is a polynomial identity.
Hence, Option(C) is not a polynomial identity.
Learn more about polynomial identity here
https://brainly.com/question/11491967
#SPJ2