Answer:
[tex]\ S=\sqrt{\dfrac{3V}{H}}}[/tex]
Step-by-step explanation:
The opposite operation of squaring is taking the square root.
[tex]\ S=\sqrt{\dfrac{3V}{H}}}[/tex]
We know that the denominator of a fractional power is the index of the corresponding root:
[tex]\displaystyle x^\frac{1}{n}=\sqrt[n]{x}[/tex]
For n=2, we don't usually write the index in the root symbol:
[tex]x^{\frac{1}{2}}=\sqrt{x}[/tex]
In the case of this problem, ...
[tex](S^2)^{\frac{1}{2}}=\left(\dfrac{3V}{H}\right)^{\frac{1}{2}}\\\\S=\sqrt{\dfrac{3V}{H}}[/tex]