Respuesta :

Answer with Step-by-step explanation:

We are given that a function

[tex]f(x)=x^3-x^2-17x-15[/tex]

We have to find the graph of the given function.

y-intercept:It is that  value of y where the graph cut the y- axis.

Let

[tex]y=f(x)=x^3-x^2-17x-15[/tex]

Substitute x=0

Then, we get

[tex]f(0)=-15[/tex]

y-intercept of the graph=-15

x- intercept: It is that value of x where the graph cut the x- axis.

Substitute y=0

[tex]x^3-x^2-17x-15=0[/tex]

Substitute x=-1

[tex]-1-1+17-15=0[/tex]

Therefore,x=-1  is a solution of given equation.

[tex](x+1)(x^2-2x-15)=0[/tex]

[tex](x+1)(x^2-5x+3x-15)=0[/tex]

[tex](x+1)(x(x-5)+3(x-5))=0[/tex]

[tex](x+1)(x+3)(x-5)=0[/tex]

[tex]\implies x=-1,-3,5[/tex]

Hence, the x-intercept are

-3,-1 and 5

Ver imagen lublana

Answer:b on edg 2020

Step-by-step explanation:

ACCESS MORE