Respuesta :
Answer:
25.35 grams of C is formed in 14 minutes
after a long time , the limiting amount of C = 60g ,
A = 0 gram
and B = 30 grams; will remain.
Step-by-step explanation:
From the information given;
Let consider x(t) to represent the number of grams of compound C present at time (t)
It is obvious that x(0) = 0 and x(5) = 10 g;
And for x gram of C;
[tex]\dfrac{2}{3}x[/tex] grams of A is used ;
also [tex]\dfrac{1}{3} x[/tex] grams of B is used
Similarly; The amounts of A and B remaining at time (t) are;
[tex]40 - \dfrac{2}{3}x[/tex] and [tex]50 - \dfrac{1}{3}x[/tex]
Therefore ; rate of formation of compound C can be said to be illustrated as ;
[tex]\dfrac{dx}{dt }\propto (40 - \dfrac{2}{3}x)(50-\dfrac{1}{3}x)[/tex]
=[tex]k \dfrac{2}{3}( 60-x) \dfrac{1}{3}(150-x)[/tex]
where;
k = proportionality constant.
= [tex]\dfrac{2}{9}k (60-x)(150-x)[/tex]
By applying the separation of variable;
[tex]\dfrac{1}{(60-x)(150-x)}dx= \dfrac{2}{9}k dt \\ \\ \\[/tex]
Solving by applying partial fraction method; we have:
[tex]\{ \dfrac{1}{90(60-x)} - \dfrac{1}{90(150-x)} \}dx = \dfrac{2}{9}kdt[/tex]
[tex]\dfrac{1}{90}(\dfrac{1}{x-150}-\dfrac{1}{x-60})dx =\dfrac{2}{9}kdt[/tex]
Taking the integral of both sides ; we have:
[tex]\dfrac{1}{90}\int\limits(\dfrac{1}{x-150}- \dfrac{1}{x-60})dx= \dfrac{2}{9}\int\limits kdx[/tex]
[tex]\dfrac{1}{90}(In(x-150)-In(x-60)) = \dfrac{2}{9}kt+C[/tex]
[tex]\dfrac{1}{90}(In(\dfrac{x-150}{x-60})) = \dfrac{2}{9}kt+C[/tex]
[tex]In( \dfrac{x-150}{x-60})= 20 kt + C_1 \ \ \ \ \ where \ \ C_1 = 90 C[/tex]
[tex]\dfrac{x-150}{x-60}= Pe ^{20 kt} \ \ \ \ \ where \ \ P= e^{C_1}[/tex]
Applying the initial condition x(0) =0 to determine the value of P
Replace x= 0 and t =0 in the above equation.
[tex]\dfrac{0-150}{0-60}= Pe ^{0}[/tex]
[tex]\dfrac{5}{2}=P[/tex]
Thus;
[tex]\dfrac{x-150}{x-60}=Pe^{20kt} \\ \\ \\ \dfrac{x-150}{x-60}=\dfrac{5}{2}e^{20kt} \\ \\ \\ 2x -300 =5e^{20kt}(x-60)[/tex]
[tex]2x - 300 = 5xe^{20kt} - 300 e^{20kt} \\ \\ 5xe^{20kt} -2x = 300 e^{20kt} -300 \\ \\ x(5e^{20kt} -2) = 300 e^{20kt} -300 \\ \\ x= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}[/tex]
Thus;
[tex]x(t)= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}[/tex]
Applying the initial condition for x(7) = 15 , to find the value of k
Replace t = 7 into [tex]x(t)= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}[/tex]
[tex]x(7)= \dfrac{300 e^{20k(7)}-300}{5e^{20k(7)}-2}[/tex]
[tex]15= \dfrac{300 e^{140k}-300}{5e^{140k}-2}[/tex]
[tex]75e^{140k}-30 ={300 e^{140k}-300}[/tex]
[tex]225e^{140k}=270[/tex]
[tex]e^{140k}=\dfrac{270}{225}[/tex]
[tex]e^{140k}=\dfrac{6}{5}[/tex]
[tex]140 k = In (\dfrac{6}{5})[/tex]
[tex]k = \dfrac{1}{140}In (\dfrac{6}{5})[/tex]
k = 0.0013
Thus;
[tex]x(t)= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}[/tex]
[tex]x(t)= \dfrac{300 e^{20(0.0013)t}-300}{5e^{20(0.0013)t}-2}[/tex]
[tex]x(t)= \dfrac{300 e^{(0.026)t}-300}{5e^{(0.026)t}-2}[/tex]
The amount of C formed in 14 minutes is ;
[tex]x(14)= \dfrac{300 e^{(0.026)14}-300}{5e^{(0.026)14}-2}[/tex]
x(14) = 25.35 grams
Thus 25.35 grams of C is formed in 14 minutes
NOW; The limiting amount of C after a long time is:
[tex]\lim_{t \to \infty} = \lim_{t \to \infty} (\dfrac{300 e^{(0.026)t}-300}{5e^{(0.026)t}-2})[/tex]
[tex]\lim_{t \to \infty} (\dfrac{300- 300 e^{(0.026)t}}{2-5e^{(0.026)t}})[/tex]
As; [tex]\lim_{t \to \infty} e^{-20kt} = 0[/tex]
⇒ [tex]\dfrac{300}{5}[/tex]
= 60 grams
Therefore as t → [tex]\infty[/tex]; x = 60
and the amount of A that remain = [tex]40 - \dfrac{2}{3}x[/tex]
=[tex]40 - \dfrac{2}{3}(60)[/tex]
= 40 -40
=0 grams
The amount of B that remains = [tex]50 - \dfrac{1}{3}x[/tex]
= [tex]50 - \dfrac{1}{3}(60)[/tex]
= 50 - 20
= 30 grams
Hence; after a long time ; the limiting amount of C = 60g , and 0 g of A , and 30 grams of B will remain.
I Hope That Helps You Alot!.