Suppose that theta is an angle in standard position whose terminal side Intersects the unit circle at (-11/61, -60/61)

Find the exact values of tan theta, sec theta, and cos theta.

Respuesta :

Answer:

The exact values of the tangent, secant and cosine of angle theta are, respectively:

[tex]\cos \theta = -\frac{11}{61}[/tex]

[tex]\tan \theta = \frac{-\frac{60}{61} }{-\frac{11}{61} } = \frac{60}{11}[/tex]

[tex]\sec \theta = \frac{1}{-\frac{11}{61} } = -\frac{61}{11}[/tex]

Step-by-step explanation:

The components of the unit vector are [tex]x = -\frac{11}{61}[/tex] and [tex]y = -\frac{60}{61}[/tex]. Since [tex]r = 1[/tex], then [tex]x = \cos \theta[/tex] and [tex]y = \sin \theta[/tex]. By Trigonometry, tangent and secant can be calculated by the following expressions:

[tex]\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}[/tex]

[tex]\sec \theta = \frac{1}{\cos \theta} = \frac{1}{x}[/tex]

Now, the exact values of the tangent, secant and cosine of angle theta are, respectively:

[tex]\cos \theta = -\frac{11}{61}[/tex]

[tex]\tan \theta = \frac{-\frac{60}{61} }{-\frac{11}{61} } = \frac{60}{11}[/tex]

[tex]\sec \theta = \frac{1}{-\frac{11}{61} } = -\frac{61}{11}[/tex]

ACCESS MORE