Rewrite x2 − 8x + 13 = 0 in the form (x − a)2 = b, where a and b are integers, to determine the a and b values. a = 4 and b = 3 a = 3 and b = 2 a = 2 and b = 1 a = 1 and b = 4

Respuesta :

Answer:

A

Step-by-step explanation:

The completing the square method is important when transforming a quadratic equation to [tex](x - a)^2 =b[/tex] form. The values of a and b are 4 and 3

Given:

[tex]x^2 - 8x + 13 = 0[/tex]

Subtract 13 from both sides

[tex]x^2 - 8x + 13 -13= 0-13[/tex]

[tex]x^2 - 8x= -13[/tex]

-------------------------------------------------------------

Next, we perform the following operations

Take the coefficient (k) of x

[tex]k = -8[/tex]

Divide k by 2

[tex]k/2 = -8/2[/tex]

[tex]k/2 = -4[/tex]

Square both sides

[tex](k/2)^2 = (-4)^2[/tex]

[tex](k/2)^2 = 16[/tex]

Back to the equation, we add 16 to both sides

-------------------------------------------------------------

[tex]x^2 - 8x= -13[/tex]

[tex]x^2 - 8x + 16 = -13 +16[/tex]

[tex]x^2 - 8x + 16 =3[/tex]

Expand the left-hand side

[tex]x^2 - 4x -4x+ 16 =3[/tex]

Factorize

[tex]x(x - 4) -4(x- 4) =3[/tex]

Factor out x -4

[tex](x - 4) (x- 4) =3[/tex]

Express as squares

[tex](x - 4)^2 =3[/tex]

Given that:

[tex](x - a)^2 =b[/tex]

By comparison:

[tex]a =4;\ b =3[/tex]

The values of a and b are 4 and 3, respectively.

Read more at:

https://brainly.com/question/9339531