The hypotenuse, c, of right triangle ABC is 5.0 cm long. Give the trigonometry ratio cosA=0.50 for angle A, what is the area of the triangle to the nearest tenth of a cm?

Respuesta :

Answer:

[tex]\frac{25\sqrt{3} }{8}[/tex]

Step-by-step explanation:

CosA = [tex]\frac{1}{2}[/tex] , so <A is 60º

Hypotenuse (c) is 5

Opposite is (b)

Adjascent is (a)

cos A = [tex]\frac{adjascent}{hypotenuse}[/tex] -----> [tex]\frac{1}{2} = \frac{a}{5}[/tex] ---------> a = [tex]\frac{5}{2}[/tex]

Pytagoras

[tex]5^{2} = (\frac{5}{2}) ^{2} + b^{2}\\ b^{2} = 25 - \frac{25}{4} \\b^{2} = \frac{75}{4} \\\\b = \frac{5\sqrt{3} }{2}[/tex]

A = b . a . 1/2

A = [tex]\frac{25\sqrt{3} }{8}[/tex]

CosA =  , so <A is 60º

Hypotenuse (c) is 5

Opposite is (b)

Adjascent is (a)

cos A =  ----->  ---------> a =  

Pytagoras

A = b . a . 1/2

A =

Step-by-step explanation:

ACCESS MORE