1. The 1992 Ford Crown Victoria came with a 190 horsepower engine. It has a drag coefficient of 0.33 and a frontal projected area of 26.36 ft2. Assuming that all of the available power from the engine is used to overcome the drag force, then what would the maximum speed (in miles per hour) be for this car

Respuesta :

Answer:

1.50 miles/hour is the correct answer to the given question  

Explanation:

As mention in the question engine power = 190 horsepower engine.......eq(1)

we have to converted into the watt as we know that 1 horse power=746 watt

putting this value in eq(1) we get

[tex]Engine \ power\ =190 *746\\\ Engine \ power =146216\ NM/S[/tex]

Drag coefficient = 0.33

Projected area = 26.36 [tex]ft^{2}[/tex]............eq(2)

we have to converted into the [tex]m^{2}[/tex]  as we know that [tex]1m^{2}\ =\ 10.7639\ ft^{2}[/tex]

putting this value in eq(2) we get

Projected area =  [tex]2.448921\ m^{2}[/tex]

Now we to calculated the Drag Force

[tex]F\ =\frac{\ Drag \ coefficient\ *P*\ V^{2}\ *A }{2}[/tex]....................eq(3)

Putting the above value in eq(3) we get

[tex]F=\ \frac{0.33\ * 1.2 * \ V^{2 \ * 2.44821\ *N} }{2} \\F=\ 0.4848V^{2}[/tex]

As we know that

[tex]F=0.4848\ V^{2}\ *V \\F= \frac{\ 0.4848V^{3} NM}{S}[/tex]

As mention in the question

Power of Engine =Drag free force

[tex]146216\ =\ 0.4848\ V^{3}\\ V^{3} =301550.889\\V=67.05M/S[/tex]

We have to converted this value into the miles/hour

1 M/S =2.22369 M/H

Putting this value into the V we get

V=67.05 * 2.2234 M/H

V=150 M/H

ACCESS MORE