Answer:
The answer is "10".
Explanation:
Given:
T= 3 year
P= $ 1000
A= $ 1331
R=?
Formula:
[tex]\bold{A= P(1+r)^t}[/tex]
[tex]\Rightarrow 1331= 1000(1+\frac{r}{100})^3\\\\\Rightarrow (1+\frac{r}{100})^3=\frac{1331}{1000}\\\\\Rightarrow (1+\frac{r}{100})^3=(\frac{11}{10})^3\\\\\Rightarrow (1+\frac{r}{100})=(\frac{11}{10})\\\\\Rightarrow \frac{r}{100}=\frac{11}{10}-1\\\\\Rightarrow \frac{r}{100}=\frac{11-10}{10}\\\\\Rightarrow \frac{r}{100}=\frac{1}{10}\\\\\Rightarrow r=\frac{1}{10}\times 100\\\\\Rightarrow r=10\\\\[/tex]