The midpoint of \overline{\text{AB}}AB is M(-2, 1)M(−2,1). If the coordinates of AA are (1, -2)(1,−2), what are the coordinates of BB?​

Respuesta :

Answer:

B=(-5, 4)

The coordinates of BB are (-5, 4)(-5,4)

Step-by-step explanation:

To solve, we will follow the steps below;

mid point = m(-2,1)

coordinates A is (1,-2)

To find the coordinates B

We will use the formula

([tex]x_{m}[/tex],[tex]y_{m}[/tex]) = ([tex]x_{1}[/tex] + [tex]x_{2}[/tex] /2  ,      [tex]y_{1}[/tex] +[tex]y_{2}[/tex]/2)

from the question

([tex]x_{m}[/tex],[tex]y_{m}[/tex])  = (-2,1)    

this implies

[tex]x_{m}[/tex] = -2    [tex]y_{m}[/tex] = 1

Also

A([tex]x_{1}[/tex] , [tex]y_{1}[/tex])           B( [tex]x_{2}[/tex] ,[tex]y_{2}[/tex])

A(1, -2)           B( [tex]x_{2}[/tex] ,[tex]y_{2}[/tex])

[tex]x_{1}[/tex]= 1     [tex]y_{1}[/tex] =-2

we are to look for  [tex]x_{2}[/tex]    and [tex]y_{2}[/tex]

[tex]x_{m}[/tex] = [tex]x_{1}[/tex] + [tex]x_{2}[/tex] /2

-2 = 1 + [tex]x_{2}[/tex] /2

multiply both-side by 2

-4 = 1+ [tex]x_{2}[/tex]

subtract 1 from both-side of the equation

-4-1 =[tex]x_{2}[/tex]

-5 = [tex]x_{2}[/tex]

[tex]x_{2}[/tex] = -5

Similarly,

[tex]y_{m}[/tex] =   [tex]y_{1}[/tex] +[tex]y_{2}[/tex]/2

 1 =   -2+[tex]y_{2}[/tex]/2

multiply both-side of the equation  by 2

2 =   -2 +[tex]y_{2}[/tex]

add 2 to both-side of the equation

2+2 = -2+ 2 +[tex]y_{2}[/tex]

 4=[tex]y_{2}[/tex]

 [tex]y_{2}[/tex]  = 4

The coordinates of BB are (-5, 4)(-5,4)

From Delta Math (-2,-7)

Ver imagen ChiChiBangBang
ACCESS MORE