Answer:
[tex]0.167 - 1.96 \sqrt{\frac{0.167(1-0.167)}{150}}=0.107[/tex]
[tex]0.167 + 1.96 \sqrt{\frac{0.167(1-0.167)}{150}}=0.227[/tex]
And the 95% confidence interval would be given (0.107;0.227).
Step-by-step explanation:
Information given
[tex]X= 25[/tex] number of trees with signs of disease
[tex] n= 150[/tex] the sample selected
[tex]\hat p=\frac{25}{150}= 0.167[/tex] the proportion of trees with signs of disease
The confidence interval for the true proportion would be given by this formula
[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
For the 95% confidence interval the significance is [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex], and the critical value would be
[tex]z_{\alpha/2}=1.96[/tex]
And replacing we got:
[tex]0.167 - 1.96 \sqrt{\frac{0.167(1-0.167)}{150}}=0.107[/tex]
[tex]0.167 + 1.96 \sqrt{\frac{0.167(1-0.167)}{150}}=0.227[/tex]
And the 95% confidence interval would be given (0.107;0.227).