Respuesta :
Answer:
Null hypothesis: the variance in hours of usage for talking is not greater than the the variance in hours of usage for internet.
[tex]H_o[/tex]: [tex]\sigma _1 ^2 \leq \sigma _2^2[/tex]
Alternative hypothesis: the variance in hours of usage for talking is greater than the the variance in hours of usage for internet.
[tex]H_a : \sigma_1^2 > \sigma_2^2[/tex]
[tex]\mathbf{s_ 1 =16.11}[/tex]
[tex]\mathbf{s_2 = 7.98}[/tex]
Step-by-step explanation:
Let [tex]x_1[/tex] and [tex]x_2[/tex] be the two variables that represents the battery life in hours for talking usage and battery life in hours for internet usage respectively.
The hypothesis can be formulated as:
Null hypothesis: the variance in hours of usage for talking is not greater than the the variance in hours of usage for internet.
[tex]H_o[/tex]: [tex]\sigma _1 ^2 \leq \sigma _2^2[/tex]
Alternative hypothesis: the variance in hours of usage for talking is greater than the the variance in hours of usage for internet.
[tex]H_a : \sigma_1^2 > \sigma_2^2[/tex]
The standard deviation for the battery usage for talking is :
[tex]\bar x_1 = \dfrac{1}{n_1} \sum x_i \\ \\ \bar x_1 = \dfrac{1}{12}(35.8 +22.4+...+35.5) \\ \\ \bar x_1 = \dfrac{241.2}{12} \\ \\ \bar x_1 =20.1[/tex]
The standard deviation Is:
[tex]s_ 1 = \sqrt{\dfrac{1}{n_1-1}\sum (x{_1i}-\bar x_i)^2}[/tex]
[tex]s_ 1 = \sqrt{\dfrac{1}{12-1}\sum (35.8- 20.1)^2+ (35.5-20.1)^2}[/tex]
[tex]s_ 1 = \sqrt{259.568}[/tex]
[tex]\mathbf{s_ 1 =16.11}[/tex]
The standard deviation for the battery life usage for the internet is :
[tex]\bar x_2 = \dfrac{1}{n_2} \sum x_{2i}[/tex]
[tex]\bar x_2 = \dfrac{1}{10} (24.0+12.5+36.4+...+4.7})[/tex]
[tex]\bar x_2 = \dfrac{115}{10}[/tex]
[tex]\bar x_2 = 11.5[/tex]
Thus; the standard deviation is:
[tex]s_2 = \sqrt{\dfrac{1}{n_2-1}(x_{2i}- \bar x_2)^2}[/tex]
[tex]s_2 = \sqrt{\dfrac{1}{10-1}(24-11.5)^2+(4.7-11.5)^2}[/tex]
[tex]s_2 = \sqrt{63.60}[/tex]
[tex]\mathbf{s_2 = 7.98}[/tex]