Answer:
Step-by-step explanation:
a) Find the gradient
[tex]\nabla f(x,y) =f_x(x,y)\bold{i} +f_y (x,y)\bold{j}[/tex]
[tex]Also, sin(4x+3y)= sin(4x)cos(3y)+sin(3y)cos (4x)[/tex]
[tex]f_x(x,y) = 4cos(4x)cos(3y)-4sin(3y)sin(4x) = 4 cos(4x-3y)[/tex]
[tex]f_y(x,y) = -3sin(4x)sin(3y)+3cos(3y)cos(4x)=3cos(4x-3y)[/tex]
Hence
[tex]\nabla f(x,y) = 4cos(4x-3y)\bold{i}+3cos(4x-3y)\bold{j}[/tex]
b) At point (-6, 8) just replace the values in gradient to find it out. You can do it.
c) directional derivative in the direction u.
[tex]D_uf(x,y)=\nabla f(x,y). u[/tex]
I stuck with your 1 2 3 i -j . What does 1 2 3 mean? is it not 123 or 1 2/3 or else?