Respuesta :
Answer:
Step-by-step explanation:
At the point (0, 1,0) t = 0
Find the tangent vector:
[tex]\frac{dx}{dt}= 1[/tex]
[tex]\frac{dy}{dt}= -4e^{-4t}[/tex]
[tex]\frac{dz}{dt}=5-5t^4[/tex]
The tangent vector for all points [tex]\vec v(t)[/tex] is
[tex]\vec v(t) = \hat {i}-4e^{-4t}\hat{j}+(5-5t^4)\hat{k}[/tex]
[tex]\rightarrow \vec v (0)= \hat{i}-4\hat{j}[/tex]
The vector equation of the tangent line is
[tex](x,y,z) = (0,1,0)+s(\hat{i}-4\hat{j})[/tex]
The parametric equation for this line are
[tex]x= s[/tex]
[tex]y=1-4s[/tex]
[tex]z=0[/tex]
Parametric equations for the tangent line to the curve with the given parametric equations at the specified point are
x=s
y=1-4s
z=0
What is the parametric equation?
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters.
At the point (0, 1,0) t = 0
Find the tangent vector:
[tex]\dfrac{dx}{dt}=1[/tex]
[tex]\dfrac{dy}{dt}=-4e^{-4t}[/tex]
[tex]\dfrac{dz}{dt}=5-5t^4[/tex]
The tangent vector for all points is
[tex]v(t)=i-4e^{-4t}j+(5-5t^4)k[/tex]
[tex]v(0)=i-4j[/tex]
The vector equation of the tangent line is
[tex](x,y,z)=(0,1,0)+s(i-4j)[/tex]
The parametric equation for this line is
[tex]x=s\\\\y=1-4s\\\\z=0[/tex]
To know more about parametric equations follow
https://brainly.com/question/51019