Respuesta :

Answer:

The solution of the given two simultaneous equation

A( 3 ,6)  and  [tex]B(\frac{1}{2} ,\frac{17}{2} )[/tex]

The intersecting points of given two simultaneous equations are

A( 3 ,6)  and  [tex]B(\frac{1}{2} ,\frac{17}{2} )[/tex]

Step-by-step explanation:

Explanation:-

Step(i):-

Given  simultaneous equation

        y  =  9-x    ...(i)

      y   = 2 x² +4 x+6 ..(ii)

Equating (i) and (ii) equations , we get

      9 -x =  2 x² +4 x+6

 ⇒    2 x² +4 x + 6- 9 +x =0

 ⇒  2 x² + 5 x - 3 =0

  ⇒ 2 x² +6 x -x -3 =0

⇒   2 x ( x +3) -1 ( x+3) =0

⇒    (2 x -1 ) ( x+3) =0

⇒    (2 x -1 ) = 0   and   ( x +3 ) =0

    [tex]2 x =1[/tex]    and   x = -3

      x = 1/2 and x =3

Step(ii):-

  x = 3  ⇒ y = 9 - 3 =6

   A( 3 ,6)

 [tex]x = \frac{1}{2} , y = 9 - \frac{1}{2} = \frac{17}{2}[/tex]

[tex]B(\frac{1}{2} ,\frac{17}{2} )[/tex]

Final answer:-

The intersecting points of two simultaneous equations are

A( 3 ,6)  and  [tex]B(\frac{1}{2} ,\frac{17}{2} )[/tex]

The solution of the given two simultaneous equation

A( 3 ,6)  and  [tex]B(\frac{1}{2} ,\frac{17}{2} )[/tex]

The solution to the given simultaneous equation is (1/2, 8 1/2) and (-3, 12)

From the question,

We are to solve the given simultaneous equations

The given equations are

y = 9-x                ---------- (1)

y = 2x²+4x+6    ---------- (2)

Substitute equation (1) into equation (2)

y = 2x²+4x+6

That is

9-x = 2x²+4x+6

Simplifying, we get

0 = 2x² +4x +x +6 -9

0 = 2x² +5x -3

∴ 2x² +5x -3 = 0

Now, solving the quadratic equation

2x²+6x -x -3 = 0

Factorizing

2x(x+3) -1(x+3) = 0

Then, we get

(2x -1)(x+3) = 0

∴ 2x - 1 = 0 OR x + 3 = 0

2x = 1 OR x = -3

∴ x = 1/2 OR x = -3

Now, substitute the values of x into equation (1) to determine the values of y

y = 9-x

When x = 1/2

y = 9 - 1/2

y = 8 1/2

and when x = -3

y = 9 --3

y = 9+3

y = 12

Hence, the solution to the given simultaneous equation is (1/2, 8 1/2) and (-3, 12)

Learn more here: https://brainly.com/question/24448700

ACCESS MORE