Respuesta :
Answer:
a [tex]D = 3.9 *10^{-12} \ m[/tex]
b [tex]\tau_{max} = 1.24 *10^{-25} \ N\cdot m[/tex]
c [tex]W = 2.48 *10^{-25} J[/tex]
Explanation:
From the question we are told that
The magnitude of electric dipole moment is [tex]\sigma = 6.2 *10^{-30} \ C \cdot m[/tex]
The electric field is [tex]E = 2*10^{4} \ N/C[/tex]
The distance between the positive and negative charge center is mathematically evaluated as
[tex]D = \frac{\sigma }{10 e}[/tex]
Where e is the charge on one electron which has a constant value of [tex]e = 1.60 *10^{-19} \ C[/tex]
Substituting values
[tex]D = \frac{6.20 *10^{-30}}{10 * (1.60 *10^{-19})}[/tex]
[tex]D = 3.9 *10^{-12} \ m[/tex]
The maximum torque is mathematically represented as
[tex]\tau_{max} = \sigma * E * sin (\theta)[/tex]
Here [tex]\theta = 90^o[/tex]
This because at maximum the molecule is perpendicular to the field
substituting values
[tex]\tau_{max} = 6.2 *10^{-30} * 2*10^{4} sin ( 90)[/tex]
[tex]\tau_{max} = 1.24 *10^{-25} \ N\cdot m[/tex]
The workdone is mathematically represented as
[tex]W = V_{(180)} - V_{0}[/tex]
where [tex]V_{(180)}[/tex] is the potential energy at 180° which is mathematically evaluated as
[tex]V_{(180) } = - \sigma * E cos (180)[/tex]
Where the negative signifies that it is acting against the field
substituting values
[tex]V_{(180) } = - 6.20 *10^{-30} * 2.0 *10^{4} cos (180)[/tex]
[tex]V_{(180) } = 1.24*10^{-25} J[/tex]
and
[tex]V_{(0)}[/tex] is the potential energy at 0° which is mathematically evaluated as
[tex]V_{(0) } = - \sigma * E cos (0)[/tex]
substituting values
[tex]V_{(0) } = - 6.20 *10^{-30} * 2.0 *10^{4} cos (0)[/tex]
[tex]V_{(0) } =- 1.24*10^{-25} J[/tex]
So [tex]W = 1.24 *10^{-25} - [-1.24 *10^{-25}][/tex]
[tex]W = 2.48 *10^{-25} J[/tex]