Which expression is equivalent to StartFraction StartRoot 2 EndRoot Over RootIndex 3 StartRoot 2 EndRoot EndFraction? One-fourth RootIndex 6 StartRoot 2 EndRoot StartRoot 2 EndRoot StartFraction StartRoot 2 EndRoot Over 2 EndFraction


Answer is RootIndex 6 StartRoot 2 EndRoot B on edg

Respuesta :

Question:

Which expression is equivalent to

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}}[/tex]

Answer:

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{6}} = \sqrt[6]{2}[/tex]

Step-by-step explanation:

Given

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}}[/tex]

Required

Simplify

From laws of indices;

[tex]\sqrt[n]{x} =x^{\frac{1}{n}}[/tex]

So, the expression can be rewritten as

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}} = \frac{{2^{\frac{1}{2}}}}{2^{\frac{1}{3}}}[/tex]

Also, from laws of indices

[tex]\frac{x^a}{x^b} = x^{a-b}[/tex]

So, the expression is further solved to:

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{2} - \frac{1}{3}[/tex]

Solve exponents as fraction

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{3-2}{6}}[/tex]

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{6}}[/tex]

This can be rewritten as

[tex]\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{6}} = \sqrt[6]{2}[/tex]

The expression equivalent to given expression is [tex]\sqrt[6]{2} [/tex].

Given expression is,  [tex]\frac{\sqrt{2} }{\sqrt[3]{2} } [/tex]

Expression can be written as,

             [tex]\frac{\sqrt{2} }{\sqrt[3]{2} } =\frac{2^{1/2} }{2^{1/3} } =2^{\frac{1}{2}-\frac{1}{3} } \\ \\ 2^{\frac{1}{2}-\frac{1}{3} } =2^{\frac{1}{6} }=\sqrt[6]{2} [/tex]

Learn more:

https://brainly.com/question/15968618

ACCESS MORE