Respuesta :

Answer:

11). [tex]m(\widehat{DE})[/tex] = 90°

12). [tex]m(\widehat{AEC})[/tex] = 212°  

Step-by-step explanation:

A circle F with AB and CD are the diameters has been given in the figure attached.

11). Since, [tex]m(\widehat{AB})[/tex] = 180°

    and [tex]m(\widehat{AB})=m(\widehat{AD})+m(\widehat{DE})+m(\widehat{BE})[/tex]

    Therefore, [tex]m(\widehat{AD})+m(\widehat{DE})+m(\widehat{BE})[/tex] = 180°

    32° + [tex]m(\widehat{DE})[/tex] + 58° = 180°

    [tex]m(\widehat{DE})[/tex] = 180° - 90°

                = 90°

12. Since, [tex]m(\widehat{AD})=m(\widehat{BC})[/tex] = 32°

                 [tex]m(\widehat{AEC})[/tex] = [tex]m(\widehat{AB})+m(\widehat{BC})[/tex]

                                = 180° + 32°

                                = 212°

ACCESS MORE