Respuesta :
Answer:
[tex]7\sqrt[5]{x^2y}[/tex]
Step-by-step explanation:
Given
[tex]4\sqrt[5]{x^2y} + 3\sqrt[5]{x^2y}[/tex]
Required
Calculate Sum
Questions like this are best answered by looking for common factor and factorizing the given expressions;
From the given expression [tex]\sqrt[5]{x^2y}[/tex] is common in both;
[tex]4(\sqrt[5]{x^2y}) + 3(\sqrt[5]{x^2y})[/tex]
So, we start by factorizing the given expression; i.e. bring out the common terms... This gives
[tex](4 + 3)\sqrt[5]{x^2y}[/tex]
Solve the bracket
[tex](7)\sqrt[5]{x^2y}[/tex]
Open Bracket
[tex]7 * \sqrt[5]{x^2y}[/tex]
[tex]7\sqrt[5]{x^2y}[/tex]
Hence, [tex]4\sqrt[5]{x^2y} + 3\sqrt[5]{x^2y}[/tex] is equivalent to [tex]7\sqrt[5]{x^2y}[/tex]
The sum of the expression; 4 (RootIndex 5 StartRoot x squared y EndRoot) + 3 (RootIndex 5 StartRoot x squared y EndRoot) is; 7 ⁵√x²y.
Sum of roots;
The given expression 4 (RootIndex 5 StartRoot x squared y EndRoot) + 3 (RootIndex 5 StartRoot x squared y EndRoot) can be written mathematically as;
[tex]4 \sqrt[5]{ {x}^{2} y } + 3\sqrt[5]{ {x}^{2} y }[/tex]
By observation, we can conclude that ⁵√x²y is a common factor; so that we have;
- ⁵√x²y(4 +3)
Ultimately, the sum is; 7 ⁵√x²y.
Read more on sum of roots;
https://brainly.com/question/2165899