A rumor spreads through a small town. Let y(t) be the fraction of the population that has heard the rumor at time t and assume that the rate at which the rumor spreads is proportional to the product of the fraction y of the population that has heard the rumor and the fraction 1−y that has not yet heard the rumor.
a. Write the differential equation satisfied by y in terms of proportionality k.
b. Find k (in units of day−1, assuming that 10% of the population knows the rumor at time t=0 and 40% knows it at time t=2 days.
c. Using the assumptions in part (b), determine when 75% of the population will know the rumor.
d. Plot the direction field for the differential equation and draw the curve that fits the solution y(0)=0.1 and y(0)=0.5.

Respuesta :

Answer:

The answer is shown below

Step-by-step explanation:

Let y(t) be the fraction of the population that has heard the rumor at time t and assume that the rate at which the rumor spreads is proportional to the product of the fraction y of the population that has heard the rumor and the fraction 1−y that has not yet heard the rumor.

a)

[tex]\frac{dy}{dt}\ \alpha\ y(1-y)[/tex]

[tex]\frac{dy}{dt}=ky(1-y)[/tex]

where k is the constant of proportionality, dy/dt =  rate at which the rumor spreads

b)

[tex]\frac{dy}{dt}=ky(1-y)\\\frac{dy}{y(1-y)}=kdt\\\int\limits {\frac{dy}{y(1-y)}} \, =\int\limit {kdt}\\\int\limits {\frac{dy}{y}} +\int\limits {\frac{dy}{1-y}} =\int\limit {kdt}\\\\ln(y)-ln(1-y)=kt+c\\ln(\frac{y}{1-y}) =kt+c\\taking \ exponential \ of\ both \ sides\\\frac{y}{1-y} =e^{kt+c}\\\frac{y}{1-y} =e^{kt}e^c\\let\ A=e^c\\\frac{y}{1-y} =Ae^{kt}\\y=(1-y)Ae^{kt}\\y=\frac{Ae^{kt}}{1+Ae^{kt}} \\at \ t=0,y=10\%\\0.1=\frac{Ae^{k*0}}{1+Ae^{k*0}} \\0.1=\frac{A}{1+A} \\A=\frac{1}{9} \\[/tex]

[tex]y=\frac{\frac{1}{9} e^{kt}}{1+\frac{1}{9} e^{kt}}\\y=\frac{1}{1+9e^{-kt}}[/tex]

At t = 2, y = 40% = 0.4

c) At y = 75% = 0.75

[tex]y=\frac{1}{1+9e^{-0.8959t}}\\0.75=\frac{1}{1+9e^{-0.8959t}}\\t=3.68\ days[/tex]

ACCESS MORE