Answer:
Following are the concentric circle represent:
Step-by-step explanation:
Given values:
[tex]3x^2 + 3y^2 + 12x - 6y - 21 = 0\\5x^2 + 5y^2 - 10x + 40y - 75 = 0\\5x^2 + 5y^2 - 30x + 20y - 10 = 0\\4x^2 + 4y^2 + 16x - 8y - 308 = 0\\x^2 + y^2 -12x - 8y - 100 = 0\\2x^2 + 2y^2 - 8x + 12y - 40 = 0\\4x^2 + 4y^2 - 16x + 24y - 28 = 0\\3x^2 + 3y^2 - 18x + 12y - 81 = 0\\x^2 + y^2 - 2x + 8y -13 = 0\\x^2 + y^2 + 24x + 30y + 17 = 0\\[/tex]
Following are the concentric value:
[tex]\Rightarrow 3x^2 + 3y^2 + 12x - 6y - 21 = 0 \leftrightarrow 4x^2 + 4y^2 + 16x - 8y - 308 = 0 \\\\[/tex]
[tex]\Rightarrow 5x^2 + 5y^2 - 10x + 40y -75 = 0 \leftrightarrow x^2 + y^2 - 2x + 8y- 13 = 0\\\\[/tex]
[tex]\Rightarrow 5x^2 + 5y^2 - 30x + 20y - 10 = 0 \leftrightarrow 3x^2 + 3y^2 - 18x + 12y - 81 = 0 \\\\[/tex]
[tex]\Rightarrow 2x^2 + 2y^2 - 8x + 12y - 40 = 0 \leftrightarrow 4x^2 + 4y^2 - 16x + 24y - 28 = 0[/tex]