Answer:
[tex]P(-1.94<X<-1.5)=P(\frac{-1.94-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{-1.5-\mu}{\sigma})=P(\frac{-1.94-0}{1}<Z<\frac{-1.5-0}{1})=P(-1.94<z<-1.5)[/tex]
And we can find this probability with this difference:
[tex]P(-1.94<z<-1.5)=P(z<-1.5)-P(z<-1.94)=0.0668-0.026= 0.0408[/tex]
Step-by-step explanation:
Let X the random variable that represent the temperatures of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(0,1)[/tex]
Where [tex]\mu=0[/tex] and [tex]\sigma=1[/tex]
We are interested on this probability
[tex]P(-1.94<X<-1.5)[/tex]
And using the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
And using this formula we got:
[tex]P(-1.94<X<-1.5)=P(\frac{-1.94-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{-1.5-\mu}{\sigma})=P(\frac{-1.94-0}{1}<Z<\frac{-1.5-0}{1})=P(-1.94<z<-1.5)[/tex]
And we can find this probability with this difference:
[tex]P(-1.94<z<-1.5)=P(z<-1.5)-P(z<-1.94)=0.0668-0.026= 0.0408[/tex]