Answer:
[tex]P(370.2<X<450.2)=P(\frac{370.2-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{450.2-\mu}{\sigma})=P(\frac{370.2-420.2}{105}<Z<\frac{450.2-420.2}{105})=P(-0.762<z<0.286)[/tex]
And we can find this probability with this difference:
[tex]P(-0.762<z<0.286)=P(z<0.286)-P(z<-0.762)= 0.613- 0.223= 0.390[/tex]
Step-by-step explanation:
Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(420.2,105)[/tex]
Where [tex]\mu=420.2[/tex] and [tex]\sigma=105[/tex]
We are interested on this probability
[tex]P(X<50)[/tex]
And we can use the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
And replacing we got:
[tex]P(370.2<X<450.2)=P(\frac{370.2-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{450.2-\mu}{\sigma})=P(\frac{370.2-420.2}{105}<Z<\frac{450.2-420.2}{105})=P(-0.762<z<0.286)[/tex]
And we can find this probability with this difference:
[tex]P(-0.762<z<0.286)=P(z<0.286)-P(z<-0.762)= 0.613- 0.223= 0.390[/tex]