Answer:
financing 62,400 dollars
Monthly Payment $ 465.48
Total Interest 21,386.4
Rounding to nearest $ 100
Additional $ 34.52
We save up to 16 payments and $2,136.4 in interest.
By-weekly payment $232.60
Total Interest saved $ 194.4
Explanation:
78,000 less 20% down-payment: 62,400
Monthly Payment
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV $62,400.00
time 180
rate 0.0034375
[tex]62400 \div \frac{1-(1+0.0034375)^{-180} }{0.0034375} = C\\[/tex]
C $ 465.484
Total Interest
quota times time less principal
$ 465.48 x 180 - 62,400 = 21,386.4
$ 500 - $ 465.48 = $ 34.52
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C $500.00
time n
rate 0.0034375
PV $62,400.0000
[tex]500 \times \frac{1-(1+0.0034375)^{-n} }{0.0034375} = 62400\\[/tex]
[tex](1+0.0034375)^{-n}= 1-\frac{62400\times0.0034375}{500}[/tex]
[tex](1+0.0034375)^{-n}= 0.571[/tex]
We now use logaritmics properties to solve for n
[tex]-n= \frac{log0.571}{log(1+0.0034375)[/tex]
-163.2956066
180 - 164 = 16 payments
Total Interst 500 x 163.30 - 62,400 = 19,250
Interest savings 21,386.4 - 19,250 = 2,136.4
If payment are bi-weekly:
then payments will be:
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV $62,400.00
time 360
rate 0.00171875
[tex]62400 \div \frac{1-(1+0.00171875)^{-360} }{0.00171875} = C\\[/tex]
C $ 232.598
And total Interest:
232.2 x 360 - 62,400 = 21,192
Difference 21,386.4 - 21,192 = $ 194.4