Respuesta :
Answer:
The kinetic energies just before touching the ground are as follows;
Case 1
[tex]W_{1} = G\times M_{E}\times m \times \dfrac{1}{2 \times r_{2}}[/tex]
Case 2
[tex]W_{2} = G\times M_{E}\times m \times \dfrac{2}{3 \times r_{2}}[/tex]
The correct option is;
K2 = (4/3) K1
Explanation:
The work done is given by the relation;
For case 1
[tex]W_1 = W_{1\rightarrow 2} = G\times M_{E}\times m \times \left (\dfrac{1}{r_{2}}-\dfrac{1}{r_{1}} \right )[/tex]
Where for case 1 we have:
G = Gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)
r₂ = Radius of the Earth
r₁ = 2 × Radius of the Earth = 2 × r₂
Hence;
[tex]W_2 = W_{1\rightarrow 2} = G\times M_{E}\times m \times \left ( \dfrac{1}{r_{2}} - \dfrac{1}{2\times r_{2}} \right )[/tex]
[tex]W_{1\rightarrow 2} = G\times M_{E}\times m \times \dfrac{1}{2 \times r_{2}}[/tex]
For case 2 we have:
G = Gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)
r₂ = Radius of the Earth
r₁ = 3 × Radius of the Earth = 2 × r₂
Hence;
[tex]W_{1\rightarrow 2} = G\times M_{E}\times m \times \left ( \dfrac{1}{r_{2}} - \dfrac{1}{3\times r_{2}} \right )[/tex]
[tex]W_{1\rightarrow 2} = G\times M_{E}\times m \times \dfrac{2}{3 \times r_{2}}[/tex]
Therefore;
[tex]\dfrac{\Delta K2}{\Delta K1} = \dfrac{W_{2}}{W_{1}} = \dfrac{G\times M_{E}\times m \times \dfrac{2}{3 \times r_{2}}}{G\times M_{E}\times m \times \dfrac{1}{2\times r_{2}}} = \dfrac{4}{3}[/tex]
Hence;
K2 = (4/3) × K1.