Answer:
d) Z= -1.49
Step-by-step explanation:
sample #1 ----->
first sample size,[tex]n_1= 85[/tex]
number of successes, sample 1 = [tex]x_1= 17[/tex]
proportion success of sample 1 ,
[tex]\bar p_1= \frac{x_1}{n_1} = 0.2000000[/tex]
sample #2 ----->
second sample size,
[tex]n_2 = 80[/tex]
number of successes, sample 2 = [tex]x_2 = 24[/tex]
proportion success of sample 1 ,
[tex]\bar p_2= \frac{x_2}{n_2} = 0.300000[/tex]
difference in sample proportions,
[tex]\bar p_1 - \bar p_2 = 0.2000 - 0.3000 \\\\= -0.1000[/tex]
pooled proportion ,
[tex]p = \frac{ (x_1+x_2)}{(n_1+n_2)}\\\\= 0.2484848[/tex]
std error ,
[tex]SE=\sqrt{p*(1-p)*(\frac{1}{n_1}+\frac{1}{n_2} )} \\\\=0.06731[/tex]
Z-statistic = [tex](\bar p_1 - \bar p_2)/SE = ( -0.100 / 0.0673 ) = -1.49[/tex]