Answer:
The student is going at the bottom of the slide with a velocity of 8.66 m/s
Explanation:
Given;
mass of the student, m = 74 kg
height of the water slide, h = 11.3 m
work done, W = -5.42 × 10³ J
Apply work energy theorem;
[tex]W = \frac{1}{2}mv_f^2+ mgh_f-(\frac{1}{2}mv_o^2 + mgh_o)\\\\ W + \frac{1}{2}mv_o^2 + mgh_o -mgh_f= \frac{1}{2}mv_f^2\\\\ W + \frac{1}{2}mv_o^2 +mg(h_o-h_f) = \frac{1}{2}mv_f^2\\\\\frac{W}{m} + \frac{1}{2} v_o^2 + g(h_o-h_f) = \frac{1}{2}v_f^2\\\\\frac{2W}{m}+ v_o^2 + 2g(h_o-h_f) = v_f^2\\\\v_f = \sqrt{\frac{2W}{m}+ v_o^2 - 2g(h_f-h_o)} \\\\v_f = \sqrt{\frac{2(-5.42*10^3)}{74}+ (0)^2 - 2*9.8(-11.3)}\\\\v_f=\sqrt{-146.4865+221.48} \\\\v_f = \sqrt{74.9935} \\\\v_f = 8.66 \ m/s[/tex]
Therefore, the student is going at the bottom of the slide with a velocity of 8.66 m/s